Barnes-Hut 算法
参考 http://arborjs.org/docs/barnes-hut
该算法对区域进行4分割。直到区域中只包含1个或者0个元素。
如下图
通过分割构造出如下树。
递归构造树的算法
1 bool Tree::buildTree(NbodyNode *tree, complexstart, complex end, vector &plants) { 2 if (tree == nullptr) 3 return false; 4 complex check = end - start; 5 if (check.real() <= 0 || check.imag() <= 0) { 6 printf("check failed\n"); 7 return false; 8 } 9 if (plants.size() == 1) {10 tree->body() = plants.front();11 tree->isPlant() = true;12 this->plants.push_back(&tree->body());13 return true;14 }15 vector wrapers[4];16 int centerX = (start.real() + end.real()) / 2;17 int centerY = (start.imag() + end.imag()) / 2;18 complex center = complex (centerX, centerY);19 complex sub = complex ();20 for (vector ::iterator i = plants.begin(); i != plants.end(); i++) {21 sub = i->location() - center;22 if (sub.real() <= 0 && sub.imag() <= 0) {23 wrapers[0].push_back(*i);24 } else if (sub.real() < 0 && sub.imag() > 0) {25 wrapers[2].push_back(*i);26 } else if (sub.real() > 0 && sub.imag() < 0) {27 wrapers[1].push_back(*i);28 } else if (sub.real() >= 0 && sub.imag() >= 0) {29 wrapers[3].push_back(*i);30 }31 }32 int width = tree->width() / 4;33 tree->body() = Plant();34 bool ret = true;35 if (wrapers[0].size() > 0) {36 tree->leftTop() = new NbodyNode(width);37 ret = ret && buildTree(tree->leftTop(), start, center, wrapers[0]);38 tree->body() = tree->body() + tree->leftTop()->body();39 }40 if (wrapers[1].size() > 0) {41 tree->rightTop() = new NbodyNode(width);42 ret = ret && buildTree(tree->rightTop(), complex (start.real() + centerX, start.imag()),43 complex (end.real(), centerY), wrapers[1]);44 tree->body() = tree->body() + tree->rightTop()->body();45 }46 if (wrapers[2].size() > 0) {47 tree->leftButtom() = new NbodyNode(width);48 ret = ret && buildTree(tree->leftButtom(), complex (start.real(), centerY),49 complex (centerX, end.imag()), wrapers[2]);50 tree->body() = tree->body() + tree->leftButtom()->body();51 }52 if (wrapers[3].size() > 0) {53 tree->rightButtom() = new NbodyNode(width);54 ret = ret && buildTree(tree->rightButtom(), center, end, wrapers[3]);55 tree->body() = tree->body() + tree->rightButtom()->body();56 }57 return ret;58 }
树中每一个非NULL节点保存该区域中星体的等效值。
若是星体,保存本身。若不是,保存该区域中的等效星体。
即
星体1 质量M1 位置(x1,y1)星体2 质量M2 位置(x2,y2)
等效星体 质量M = M1+M2 位置(x = (x1*M1+x*M2)/M, y = (y1*M1+y2*M2)/M);
如下图
s 为该区域的宽度
d 为A星体到蓝色区域等效星体的距离
若 d/s < θ
则该区域可以被等效,否则计算该区域的子区域。
若区域本身是一个星体,则直接计算该星体对A的万有引力。不用计算 d/s